Savoir mettre en oeuvre les outils de Machine Learning sur Spark, savoir créer des modèles et les exploiter.
Connaissance d'un langage de programmation comme Python, Java ou Scala.
|
| Introduction |
Durée : 1h30 Méthodes pédagogiques : exposé/échanges Matériels et moyens : video-projecteur en présentiel, tableau partagé en classe virtuelle | Rappels sur Spark : principe de fonctionnement, langages supportés.
|
|
| DataFrames |
Durée : 1h30 Méthodes pédagogiques : exposé/échanges Matériels et moyens : video-projecteur en présentiel, tableau partagé en classe virtuelle | Objectifs : traitement de données structurées. L'API Dataset et DataFrames Optimisation des requêtes. Mise en oeuvre des Dataframes et DataSet. Chargement de données, pré-traitement : standardisation, transformations non linéaires, discrétisation Génération de données.
|
|
| Traitements statistiques de base |
Durée : 1h30 Méthodes pédagogiques : exposé/échanges Matériels et moyens : video-projecteur en présentiel, tableau partagé en classe virtuelle | Introduction aux calculs statistiques. Paramétrisation des fonctions. Applications aux fermes de calculs distribués. Problématiques induites. Approximations. Précision des estimations. Exemples sur Spark : calculs distribués de base : moyennes, variances, écart-type, asymétrie et aplatissement (skewness/kurtosis)
|
|
| Machine Learning |
Durée : 1h30 Méthodes pédagogiques : exposé/échanges Matériels et moyens : video-projecteur en présentiel, tableau partagé en classe virtuelle | Apprentissage automatique : définition, les attentes par rapport au Machine Learning Les valeurs d'observation, et les variables cibles. Ingénierie des variables. Les méthodes : apprentissage supervisé et non supervisé. Classification, régression. Fonctionnalités : Machine Learning avec Spark, algorithmes standards, gestion de la persistence, statistiques.
|
|
| Mise en oeuvre sur Spark |
Durée : 3h Méthodes pédagogiques : alternance de théorie et de travaux pratiques Matériels et moyens : vidéo-projecteur en présentiel, tableau partagé en classe virtuelle, infrastructure distribuée serveurs Linux | Mise en oeuvre avec les DataFrames. Algorithmes : régression linéaire, k-moyennes, k-voisins, classification naïve bayésienne, arbres de décision, forêts aléatoires, etc ... Création de jeux d'essai, entraînement et construction de modèles. Prévisions à partir de données réelles.Atelier : régression logistiques, forêts aléatoires, k-moyennes.
Recommandations, recommendForAllUsers(), recommendForAllItems();
|
|
| Modèles |
Durée : 1h30 Méthodes pédagogiques : exposé/échanges Matériels et moyens : video-projecteur en présentiel, tableau partagé en classe virtuelle | Chargement et enregistrement de modèles. Mesure de l'efficacité des algorithmes. Courbes ROC. MulticlassClassificationEvaluator(). Mesures de performance. Descente de gradient. Modification des hyper-paramètres. Application pratique avec les courbes d'évaluations.
|
|
| Spark/GraphX |
Durée : 3h Méthodes pédagogiques : alternance de théorie et de travaux pratiques Matériels et moyens : vidéo-projecteur en présentiel, tableau partagé en classe virtuelle, infrastructure distribuée serveurs Linux | Gestion de graphes orientés sur Spark Fourniture d'algorithmes, d'opérateurs simples pour des calculs statistiques sur les graphesAtelier : exemples d'opérations sur les graphes.
|
|
| IA |
Durée : 1h Méthodes pédagogiques : exposé/échanges Matériels et moyens : video-projecteur en présentiel, tableau partagé en classe virtuelle | Introduction aux réseaux de neurones. Les types de couches : convolution, pooling et pertes. L'approche du Deep Learning avec Spark. Deeplearning4j sur Spark.
|