développeurs en Python, Développeurs de logiciels, programmeurs, Data analysts, Data scientists.
Savoir utiliser les principaux outils de traitement et d'analyse de données pour Python, savoir extraire des données d'un fichier et les manipuler, mettre en place un modèle d'apprentissage simple
Bonne connaissance de la programmation Python.
|
| Positionnement Python dans l'analyse de données |
Durée : 2h30 Méthodes pédagogiques : exposé/échanges Matériels et moyens : video-projecteur en présentiel, tableau partagé en classe virtuelle | Besoins des data-scientists : calculs, analyse d'images, machine learning, interface avec les bases de données Apports de python : grande variété d'outils, expertise dans le domaine du calcul scientifique Tour d'horizon des outils: pandas, pyarrow, agate, bokeh, scikit-learn, pybrain, tensorflow, keras, mxnet, caffe, Pytorch
|
|
| Calculs et graphiques |
Durée : 4h30 Méthodes pédagogiques : alternance de théorie et de travaux pratiques Matériels et moyens : vidéo-projecteur en présentiel, tableau partagé en classe virtuelle, infrastructure distribuée serveurs Linux | NumPy : Base du calcul sur des tableaux SciPy : Scientific Tools for Python, couche scientifique Manipulation de tableaux, fonctions mathématiques. Représentation graphique avec basemap et matplotlib.Atelier : Mise en oeuvre de SciPy/NumPy : manipulation d'images, détection de contours
|
|
| Être capable d'extraire des données d'un fichier |
Durée : 4h30 Méthodes pédagogiques : alternance de théorie et de travaux pratiques Matériels et moyens : vidéo-projecteur en présentiel, tableau partagé en classe virtuelle, infrastructure distribuée serveurs Linux | Pandas : manipulation de tables de données. Notion de dataframe. Manipulation de données relationnelles Tableaux avec Pandas: indexation, opérations, algèbre relationnelle Stockage dans des fichiers: CSV, JSon Comparaison et performances Pandas / pyarrow / NumPyAtelier : construction d'ETL de base entre json et csvkagglt.com,
|
|
| Comprendre les mécanismes d'interconnexion aux bases de données |
Durée : 4h30 Méthodes pédagogiques : alternance de théorie et de travaux pratiques Matériels et moyens : vidéo-projecteur en présentiel, tableau partagé en classe virtuelle, infrastructure distribuée serveurs Linux | Définitions : pilotes, connexions, curseurs, CRUD, transactions Les pilotes : postgresql, mysql, mariadb, ... Présentation de sql-alchemy Opérations : gestion du curseur, chargement de données, insertion et modification d'enregistrementsAtelier : mise en oeuvre avec postgresql. Construction d'ETL SQL/json
|
|
| Comprendre les principaux outils de traitement et d'analyse de données pour Python |
Durée : 4h30 Méthodes pédagogiques : alternance de théorie et de travaux pratiques Matériels et moyens : vidéo-projecteur en présentiel, tableau partagé en classe virtuelle, infrastructure distribuée serveurs Linux | Présentation des outils d'apprentissage Python : scikit-learn, pybrain, TensorFlow/keras, mxnet, caffe Atelier : mise en oeuvre de scikit-learn
|
|
| Créer des sélections et des classements dans de grands volumes de données pour dégager des tendances |
Durée : 2h Méthodes pédagogiques : exposé/échanges Matériels et moyens : video-projecteur en présentiel, tableau partagé en classe virtuelle | Présentation de pyspark Machine learning et deep learning : les solutions Python, TensorFlow : principe de fonctionnement, plateformes supportées, distribution
|
|
| Sites de références data-sciences |
Durée : 2h Méthodes pédagogiques : exposé/échanges Matériels et moyens : video-projecteur en présentiel, tableau partagé en classe virtuelle | Ressources d'apprentissage, datasets, modèles de données pré-entrainés, etc .. Présentation de : kaggle.com, data-puzzles.com, huggingface.co
|
|
| Optimisation des développements |
Durée : 4h Méthodes pédagogiques : alternance de théorie et de travaux pratiques Matériels et moyens : vidéo-projecteur en présentiel, tableau partagé en classe virtuelle, infrastructure distribuée serveurs Linux | Tour d'horizon des outils actuels et futurs: Jupyter notebook, Aide à la vérification de code, respect des recommandations PEP8 : exemples avec pydecodestyle, Pylint, Black Analyse et production de code informatique avec une IA. Génération de code avec OpenAI : démonstrations ChatGPT, apports, bonnes pratiques.Atelier : utilisation de la génération de code et de snippets Python avec ChatGPT
|